Inorganic Chemistry

Molecular Recognition of Inositol 1,4,5-Trisphosphate and Model Compounds in Aqueous Solution by Ditopic Zn²⁺ Complexes Containing Chiral Linkers

Masanori Kitamura,^{†,‡} Hiroyuki Nishimoto,[†] Keita Aoki,[†] Masato Tsukamoto,[†] and Shin Aoki*,^{†,‡}

[†]*Faculty of Pharmaceutical Sciences and* [‡]*Center for Technologies against Cancer, Tokyo University of Science, 2641 Yamazaki, Noda 278-8510, Japan*

Received March 1, 2010

We report on molecular recognition of inositol 1,4,5-trisphosphate (lns(1,4,5)P₃), an important intracellular second messenger, and some related model compounds, cyclohexanediol bisphosphate derivatives (CDP₂), by ditopic Zn²⁺ complexes containing chiral linkers ((*S*,*S*)- and (*R*,*R*)-11) in aqueous solution at physiological pH. A crystal structure analysis of (*S*,*S*)-11 indicated that the distance between two Zn²⁺ ions (6.8 Å) is suitable for accommodating two phosphate groups at the 4- and 5-positions of lns(1,4,5)P₃ and two phosphate groups of *trans*-1,2-CDP₂. ¹H NMR, ³¹P NMR, potentiometric pH, and isothermal calorimetric titration data indicate that (*S*,*S*)-11 forms 1:1 complexes with (*S*,*S*)- and (*R*,*R*)-1,2-CDP₂ at pH 7.4 and 25 °C. The apparent 1:1 complexation constants (log *K*_{app}) for (*S*,*S*)-11-(*S*,*S*)-1,2-CDP₂ and (*S*,*S*)-11-(*R*,*R*)-1,2-CDP₂ (*K*_{app} = [(*S*,*S*)-11-1,2-CDP₂ complex]/[(*S*,*S*)-11][1,2-CDP₂] (M⁻¹)) were determined to be 7.6 ± 0.1 and 7.3 ± 0.1, respectively, demonstrating that both enantiomers of 11 bind to chiral *trans*-1,2-CDP₂, while a small amount of 2:1 (*S*,*S*)-11-*cis*-1,3-CDP₂ was detected, as evidenced by electrospray ionization mass spectrometry (ESI-MS). In contrast, 11 formed several complexes with *trans*-1,4-CDP₂. On the basis of isothermal titration calorimetry data for (*S*,*S*)- and (*R*,*R*)-11 with lns(1,4,5)P₃, it was concluded that 11 forms a 2:1 complex with lns(1,4,5)P₃, in which the first molecule of 11 binds to the 4- and 5-phosphates of lns(1,4,5)P₃ and the second molecule of 11 binds to the 1- and 5-phosphates.

Introduction

It is well-known that D-myo-inositol 1,4,5-trisphosphate (Ins(1,4,5)P₃) is one of the important second messengers in intracellular signal transduction, which induces the release of

 Ca^{2+} from intracellular Ca^{2+} stores such as the endoplasmic reticulum (ER).¹ It has been reported that $Ins(1,4,5)P_3$ receptors (InsP₃R) are intracellular channel proteins that mediate the release of Ca^{2+} from ER² and regulate a number of processes, including cell proliferation and cell death.³

The intracellular concentration of $Ins(1,4,5)P_3$ is generally in the nanomolar range,^{2c,4,5} and $InsP_3R$ cooperatively responds to subtle changes (nanomolar) in its concentrations.⁶ In addition, the intracellular $Ins(1,4,5)P_3$ is rapidly converted to derivatives that are unable to activate the Ca²⁺

^{*}To whom correspondence should be addressed. E-mail: shinaoki@ rs.noda.tus.ac.jp.

^{(1) (}a) Berridge, M. J. Nature 1993, 361, 315–325. (b) Clapham, D. E. Cell
1995, 80, 259–268. (c) Potter, B. V. L.; Lampe, D. Angew. Chem., Int. Ed. Engl.
1995, 34, 1933–1972. (d) Taylor, C. W. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1998, 1436, 19–33. (e) Shears, S. B. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1998, 1436, 49–67. (f) Hinterding, K.; Alonso-Diaz, D.; Waldmann,
H. Angew. Chem., Int. Ed. 1998, 37, 688–749. (g) Yang, X.; Rudolf, M.; Carew,
M. A.; Yoshida, M.; Nerreter, V.; Riley, A. M.; Chung, S.-K.; Bruzik, K. S.; Potter,
B. V. L.; Schultz, C.; Shears, S. B. J. Biol. Chem. 1999, 274, 18973–18980.
(h) Irvine, R. F.; Schell, M. J. Nature Rev. Mol. Cell Biol. 2001, 2, 327–338.
(i) Irvine, R. Curr. Biol. 2001, 11, R172–174. (j) Taylor, C. W.; Thorn, P. Curr. Biol. 2001, 11, R352–355. (k) Miller, G. J.; Wilson, M. P.; Majerus, P. W.; Hurley,
J. H. Mol. Cell 2005, 18, 201–212. (l) Chamberlain, P. P.; Qian, X.; Stiles, A. R.; Cho, J.; Jones, D. H.; Lesley, S. A.; Grabau, E. A.; Shears, S. B.; Spraggon, G. J. Biol. Chem. 2007, 282, 28117–28125.

^{(2) (}a) Furuichi, T.; Yoshikawa, S.; Miyawaki, A.; Wada, K.; Maeda, N.; Mikoshiba, K. *Nature* 1989, *342*, 32–38. (b) Maeda, N.; Kawasaki, T.; Nakade, S.; Yokota, N.; Taguchi, T.; Kasai, M.; Mikoshiba, K. *J. Biol. Chem.* 1991, *266*, 1109–1116. (c) Miyawaki, A.; Furuichi, T.; Ryou, Y.; Yoshikawa, S.; Nakagawa, T.; Saitoh, T.; Mikoshiba, K. *Proc. Natl. Acad. Sci. U.S.A.* 1991, *88*, 4911–4915. (d) Furuichi, T.; Mikoshiba, K. *J. Neurochem.* 1995, *64*, 953–960. (e) Dawson, A. P. *Curr. Biol.* 1997, *7*, R544–R547. (f) Hamada, K.; Terauchi, A.; Mikoshiba, K. *J. Biol. Chem.* 2003, *278*, 52881–52889.

^{(3) (}a) Dolmetsch, R. E.; Lewis, R. S.; Goodnow, C. C.; Healy, J. I. *Nature* **1997**, *386*, 855–858. (b) Berridge, M. J.; Lipp, P.; Bootman, M. D. *Nature Rev. Mol. Cell Biol.* **2000**, *1*, 11–21. (c) Higo, T.; Hattori, M.; Nakamura, T.; Natsume, T.; Michikawa, T.; Mikoshiba, K. *Cell* **2005**, *120*, 85–98. (d) Joseph, S. K.; Hajnóczky, G. *Apoptosis* **2007**, *12*, 951–968.

⁽⁴⁾ Luzzi, V.; Sims, C. E.; Soughayer, J. S.; Allbritton, N. L. J. Biol. Chem. 1998, 273, 28657–28662.

^{(5) (}a) Cardy, T. J. A.; Traynor, D.; Taylor, C. W. *Biochem. J.* 1997, *328*, 785–793.
(b) Uchiyama, T.; Yoshikawa, F.; Hishida, A.; Furuichi, T.; Mikoshiba, K. *J. Biol. Chem.* 2002, *277*, 8106–8113.

⁽⁶⁾ Berg, J. M.; Tymoczko, J. L.; Stryer, L. *Biochemistry*, 5th ed.; W. H. Freeman and Company: New York, 2002; pp 405–406.

channel.⁷ Therefore, development of novel receptors that bind tightly and rapidly to $Ins(1,4,5)P_3$ is highly required.

Biological sensing systems for Ins(1,4,5)P₃ and its analogues have been extensively studied during the past decade.^{4,8} However, only a few reports of chemical sensing systems for $Ins(1,4,5)P_3$ have appeared to date,⁹⁻¹¹ despite the many studies on chemical receptors for phosphates.¹² A representative example of chemical systems for the detection of Ins(1,4,5)P₃ is an indicator-displacement assay that involves the use of a synthetic receptor having six guanidinium groups developed by Anslyn and colleagues.⁹ Ahn recently exploited a tridentate Zn²⁺ complex as a synthetic receptor for Ins- $(1,4,5)P_3$ with an indicator displacement method, as well.¹⁰

It has been established that $Zn^{2+}-1,4,7,10$ -tetraazacyclododecane $(Zn^{2+}-cyclen)$ complexes, such as 1 (ZnL^{1}) , are good anion receptors and form 1:1 complexes 2 with biorelevant anions (X^-) such as phosphate monoester dianions, ¹³ carboxylates, ¹⁴ imidates, ¹⁵ and thiolates¹⁶ in aqueous

(7) Boekhoff, I.; Tareilus, E.; Strotmann, J.; Breer, H. EMBO J. 1990, 9, 2453-2458

(8) (a) Hirose, K.; Kadowaki, S.; Tanabe, M.; Takeshima, H.; Iino, M. Science 1999, 284, 1527-1530. (b) Luzzi, V.; Murtazina, D.; Allbritton, N. L. Anal. Biochem. 2000, 277, 221-227. (c) Cheley, S.; Gu, L.-Q.; Bayley, H. Chem. Biol. 2002, 9, 829-838. (d) Morii, T.; Sugimoto, K.; Makino, K.; Otsuka, M.; Imoto, K.; Mori, Y. J. Am. Chem. Soc. 2002, 124, 1138-1139. (e) Fishman, H. A.; Greenwald, D. R.; Zare, R. N. Annu. Rev. Biophys. Biomol. Struct. 1998, 27, 165-198.

(9) Niikura, K.; Metzger, A.; Anslyn, E. V. J. Am. Chem. Soc. 1998, 120, 8533-8534.

(10) Oh, D. J.; Ahn, K. H. Org. Lett. 2008, 10, 3539–3542.
(11) Aoki, S.; Zulkefeli, M.; Shiro, M.; Kohsako, M.; Takeda, K.; Kimura, E. J. Am. Chem. Soc. 2005, 127, 9129–9139.

(12) (a) Tobey, S. L.; Jones, B. D.; Anslyn, E. V. J. Am. Chem. Soc. 2003, 125, 4026-4027. (b) Zhong, Z.; Anslyn, E. V. Angew. Chem., Int. Ed. 2003, 42, 3005-3008. (c) Barker, J. E.; Liu, Y.; Martin, N. D.; Ren, T. J. Am. Chem. Soc. 2003, 125, 13332-13333. (d) Abe, H.; Mawatari, Y.; Teraoka, H.; Fujimoto, K.; Inouye, M. J. Org. Chem. 2004, 69, 495-504. (e) Kinoshita, E.; Takahashi, M.; Takeda, H.; Shiro, M.; Koike, T. Dalton Trans. 2004, 1189-1193. (f) Aldakov, D.; Anzenbacher, P. J. Am. Chem. Soc. 2004, 126, 4752-4753. (g) Zhang, T.; Anslyn, E. V. Tetrahedron 2004, 60, 11117-11124. (h) Lakshmi, C.; Hanshaw, R. G.; Smith, B. D. Tetrahedron 2004, 60, 11307-11315. (i) Kubik, S.; Reyheller, C.; Stüwe, S. J. Inclusion Phenom. Macrocyclic Chem. 2005, 52, 137-187. (j) Yamaguchi, S.; Yoshimura, I.; Kohira, T.; Tamaru, S.; Hamachi, I. J. Am. Chem. Soc. 2005, 127, 11835-11841. (k) Olivier, C.; Grote, Z.; Solari, E.; Scopelliti, R.; Severin, K. Chem. Commun. 2007, 4000-4002. (1) Nelissen, H. F. M.; Smith, D. K. Chem. Commun. 2007, 3039-3041. (m) Morrow, J. R.; Amyes, T. L.; Richard, J. P. Acc. Chem. Res. 2008, 41, 539-548. (n) Lee, G. W.; Singh, N.; Jang, D. O. Tetrahedron Lett. 2008, 49, 1952-1956. (o) Kim, S. K.; Lee, D. H.; Hong, J.-I.; Yoon, J. Acc. Chem. Res. 2009, 42, 23-31. (p) Sakamoto, T.; Ojida, A.; Hamachi, I. Chem. Commun. 2009, 141-152. (q) Khatua, S.; Choi, S. H.; Lee, J.; Kim, K.; Do, Y.; Churchill, D. G. Inorg. Chem. 2009, 48, 2993-2999. (r) Su, G.; Li, Z.; Xie, Z.; Qian, F.; He, W.; Guo, Z. Dalton Trans. 2009, 7888–7890. (s) Bazzicalupi, C.; Bencini, A.; Biagini, S.; Faggi, E.; Meini, S.; Giorgi, C.; Spepi, A.; Valtancoli, B. J. Org. Chem. 2009, 74, 7349-7363.

(13) (a) Koike, T.; Kimura, E. J. Am. Chem. Soc. 1991, 113, 8935-8941. (b) Aoki, S.; Iwaida, K.; Hanamoto, N.; Shiro, M.; Kimura, E. J. Am. Chem. Soc. 2002, 124, 5256-5257. (c) Aoki, S.; Jikiba, A.; Takeda, K.; Kimura, E. J. Phys. Org. Chem. 2004, 17, 489-497.

(14) Aoki, S.; Kagata, D.; Shiro, M.; Takeda, K.; Kimura, E. J. Am. Chem. Soc. 2004, 126, 13377-13390.

Scheme 1

solution at neutral pH (Scheme 1).¹⁷ We previously examined the complexation of an achiral tris(Zn^{2+} -cyclen) complex **3** (Zn_3L^2)¹⁸ with *cis,cis*-1,3,5-cyclohexanetriol trisphosphate (CTP₃) (Chart 1).¹¹ CTP₃ was chosen as a model compound for $Ins(1,4,5)P_3$ because it is readily available and is able to activate an InsP₃R of Neurospora crassa.¹⁹ The findings revealed that 3 forms the 1:1 complex 4, the dissociation constant (K_d) of which was 10 nM at pH 7.4 (Chart 1).¹¹ In addition, a luminescent $Ins(1,4,5)P_3$ sensor 5 (Ru(Zn₂L³)₃) was designed and synthesized as the first chemical sensor to directly respond to $Ins(1,4,5)P_3$ by the Ru-templated assembly of bis $(Zn^{2+}-cyclen)$ containing 2,2'-bipyridine (bpy) linker (Zn_2L^3) .¹¹ The findings indicate that **5** forms a 2:1 complex, 6, with CTP₃, resulting in a considerable enhancement in its luminescent emission in neutral aqueous solution. However, luminescent titrations of 5 with chiral $Ins(1,4,5)P_3$ suggested that $5-Ins(1,4,5)P_3$ complexation is rather weaker than that for **5** with achiral CTP₃.

We later performed isothermal titration calorimetry (ITC) of $Ins(1,4,5)P_3$ with 3, but the analysis was complicated, as described in the first part of this manuscript, possibly because of a symmetrical mismatch between **3** and $Ins(1,4,5)P_3$. We next attempted the optical resolution of racemic 5 (isolation of Δ and Λ forms) for the enantioselective recognition of $Ins(1,4,5)P_3$, because $Ins(1,4,5)P_3$ is a chiral molecule that contains six asymmetric carbons. However, this has not been successful, as of this writing.

The crystal structures of $Ins(1,4,5)P_3$ complexed with the $InsP_3R$ binding core²⁰ and the binding site of $Ins(1,4,5)P_3$ 3-kinase (IPK)²¹ have been reported. These findings suggest that two phosphates at the 4- and 5-positions (P4 and P5) of $Ins(1,4,5)P_3$ are important for complexation at the binding sites of these proteins, and the 1-phosphate (P1) and

^{(15) (}a) Shionoya, M.; Kimura, E.; Shiro, M. J. Am. Chem. Soc. 1993, 115, 6730-6737. (b) Kimura, E.; Kikuchi, M.; Kitamura, H.; Koike, T. Chem.-Eur. J. 1999, 5, 3113-3123. (c) Kikuta, E.; Murata, M.; Katsube, N.; Koike, T.; Kimura, E. J. Am. Chem. Soc. 1999, 121, 5426-5436. (d) Aoki, S.; Shiro, M.; Koike, T.; Kimura, E. J. Am. Chem. Soc. 2000, 122, 576-584. (e) Kikuta, E.; Aoki, S.; Kimura, E. J. Am. Chem. Soc. 2001, 123, 7911-7912. (f) Yamada, Y.; Aoki, S. J. Biol. Inorg. Chem. 2006, 11, 1007–1023. (g) Aoki, S.; Tomiyama, Y.; Kageyama, Y.; Yamada, Y.; Shiro, M.; Kimura, E. Chem. Asian J. 2009, 4, 561-573.

^{(16) (}a) Aoki, S.; Shiro, M.; Kimura, E. Chem.—Eur. J. 2002. 8, 929–939. (b) Aoki, S.; Zulkefeli, M.; Shiro, M.; Kimura, E. Proc. Natl. Acad. Sci. U.S.A. 2002, 99, 4894-4899. (c) Zulkefeli, M.; Sogon, T.; Takeda, K.; Kimura, E.; Aoki, S. Inorg. Chem. 2009, 48, 9567-9578.

⁽¹⁷⁾ For reviews: (a) Kimura, E.; Koike, T. In Comprehensive Supramolecular Chemistry; Reinhoudt, D. N., Ed.; Pergamon: Tokyo, 1996; Vol. 10, pp 429-444. (b) Kimura, E.; Koike, T.; Shionoya, M. In Structure and Bonding: Metal Site in Proteins and Models; Sadler, J. P., Ed.; Springer: Berlin, 1997; Vol. 89, pp 1-28. (c) Kimura, E.; Koike, T. J. Chem. Soc., Chem. Commun. 1998, 1495-1500. (d) Kimura, E.; Koike, T. In Bioinorganic Catalysis; Reedijk, J., Bouwman, E., Eds.; Marcel Dekker, Inc.: Tokyo, 1999; pp 33-54. (e) Kimura, E.; Kikuta, E. J. Biol. Inorg. Chem. 2000, 5, 139-155. (f) Kimura, E. Curr. Opin. Chem. Biol. 2000, 4, 207-213. (g) Kimura, E. Acc. Chem. Res. 2001, 34, 171-179. (h) Aoki, S.; Kimura, E. Rev. Mol. Biotechnol. 2002, 90, 129-155. (i) Aoki, S.; Kimura, E. In Comprehensive Coordination Chemistry II; Que, Jr., L., Tolman, W. B., Eds.; Elsevier: Amsterdam, 2004; Vol. 8, pp 601-640. (j) Aoki, S.; Kimura, E. Chem. Rev. 2004, 104, 769-788.

⁽¹⁸⁾ Kimura, E.; Aoki, S.; Koike, T.; Shiro, M. J. Am. Chem. Soc. 1997, 119. 3068-3076.

⁽¹⁹⁾ Schultz, C.; Gebauer, G.; Metschies, T.; Rensing, L.; Jastorff, B. Biochem. Biophys. Res. Commun. 1990, 166, 1319-1327.

⁽²⁰⁾ Bosanac, I.; Alattia, J.-R.; Mal, T. K.; Chan, J.; Talarico, S.; Tong, F. K.; Tong, K. I.; Yoshikawa, F.; Furuichi, T.; Iwai, M.; Michikawa, T.;

Mikoshiba, K.; Ikura, M. *Nature* **2002**, *420*, 696–700. (21) González, B.; Schell, M. J.; Letcher, A. J.; Veprintsev, D. B.; Irvine, R. F.; Williams, R. L. Mol. Cell 2004, 15, 689-701.

Chart 1

Kd = 0.4 µM at pH 7.6

other hydroxyl groups are less important for complexation.^{20,22}

We thus hypothesized that chiral ditopic Zn^{2+} complexes would be effective in terms of cooperatively and selectively recognizing the P4 and P5 of $Ins(1,4,5)P_3$. It was previously reported that achiral bis(Zn²⁺-cyclen) complexes having *m*- and *p*-xylene linkers, 7 (Zn_2L^4) and 9 (Zn_2L^5), are potent receptors for thymidinyl(3'-5')thymidine (d(TpT)) and dTcontaining nucleotides including thymidine 5'-monophosphate (5'-dTMP) and yield 1:1 complexes such as 8 and 10 because of coordination of Zn^{2+} with T^- anion and phosphate anion, the dissociation constants (K_d) of which are in the submicromolar

Scheme 2

order (Chart 2).^{23,24} On the basis of this background information, we attempted to design and synthesize chiral ditopic Zn^{2+} complexes (S,S)- and (R,R)-11 (Chart 3), whose chiral linkers are readily available from L- and D-tartaric acid or D-mannitol, for the recognition of the P4 and P5 of $Ins(1,4,5)P_3$.

As shown in Scheme 2, the absolute configurations of Ins-(1,4,5)P₃ at C4 and C5 are R, allowing us to assume that (R,R)trans-1,2-cyclohexanediol bisphosphate, (R,R)-12 or (R,R)-1,2- CDP_2 could serve as a simple model for $Ins(1,4,5)P_3$.²⁵ We expected that the chiral linkers of 11 would fix the position of its two Zn²⁺-cyclen units in appropriate positions for binding with the two phosphate groups of chiral (R,R)-1,2-CDP₂, as depicted in the top left of Scheme 2. In addition, we envisioned that (S,S)- or (R,R)-11 might be able to discriminate *trans*-1,2- CDP_2 from its regionsomers such as achiral *cis*-1,3- CDP_2 (13), which resembles the P1 and P5 of Ins(1,4,5)P3, and achiral trans-1,4-CDP₂ (14), which stands for P1 and P4 of $Ins(1,4,5)P_3$.

^{(22) (}a) Kozikowski, A. P.; Ognyanov, V. I.; Fanq, A. H.; Nohorski,

S. R.; Wilcox, R. A. J. Am. Chem. Soc. 1993, 115, 4429-4434. (b) Wilcox, R. A.; Primrose, W. T.; Nahorski, S. R.; Challis, R. A. Trends Pharmacol. Sci. 1998, 19, 467-475

⁽²³⁾ Aoki, S.; Sugimura, C.; Kimura, E. J. Am. Chem. Soc. 1998, 120, 10094-10102

⁽²⁴⁾ Aoki, S.; Kimura, E. J. Am. Chem. Soc. 2000, 122, 4542-4548.

⁽²⁵⁾ It was also reported that CDP2 derivatives were models for studies of Ins(1,4,5)P₃ and its analogues: (a) Hendrickson, H. S.; Reinertsen, J. L. Biochemistry 1969, 8, 4855-4858. (b) Shuey, S. W.; Deerfield, D. W., II; Amburgey, J. C.; Cabaniss, S. E.; Huh, N.-W.; Charifson, P. S.; Pedersen, L. G.; Hiskey, R. G. Bioorg. Chem. 1993, 21, 95-108.

In this paper, we report on the selective recognition of CDP_2 derivatives by (*S*,*S*)- and (*R*,*R*)-**11**, as studied by ¹H NMR, ³¹P NMR, potentiometric pH and isothermal calorimetric titrations, and mass spectrometry. The molecular recognition of $\text{Ins}(1,4,5)\text{P}_3$ by both enantiomers of **11** were also examined. The findings show that **11** and $\text{Ins}(1,4,5)\text{P}_3$ form a 2:1 complex, in which the first molecule of **11** binds to P4 and P5, and the second molecule binds to P1 and P5, respectively.

Experimental Section

General Information. All reagents and solvents were purchased at the highest commercial quality and were used without further purification. Zn(NO₃)₂·6H₂O was purchased from Kanto Chemical Co. Ltd. Acetonitrile (CH₃CN) and dichloromethane (CH₂Cl₂) were distilled from calcium hydride. All aqueous solutions were prepared using deionized and distilled water. Buffer solutions (HEPES, pH 7.4) were used, and the ionic strengths were adjusted with NaNO3. Melting points were measured on a YANACO Micro Melting Point Apparatus and are uncorrected. IR spectra were recorded on a JASCO FTIR-410 spectrophotometer at room temperature (rt). ¹H (400 MHz) and ${}^{13}C$ (100 MHz) NMR spectra at 25 \pm 0.1 °C were recorded on a JEOL Lambda 400 spectrometer. ${}^{1}H$ (300 MHz) and ${}^{13}C$ (75 MHz) NMR spectra were recorded on a JEOL Always 300 spectrometer. Chemical shifts (δ) in CDCl₃ were determined relative to an internal reference of tetramethylsilane (TMS) for ¹H NMR and CDCl₃ for ¹³C NMR. Chemical shifts (δ) in D₂O were determined relative to an external reference of 3-(trimethylsilyl)propionic-2,2,3,3- d_4 acid (TSP) sodium salt for ¹H NMR and 1,4-dioxane for ¹³C NMR. 85% H₃PO₄ was used as an external reference for the ³¹P NMR measurements. The pD values in D_2O were corrected for a deuterium isotope effect using pD = (pH-meter reading) + 0.40. Elemental analyses were performed on a Perkin-Elmer CHN 2400 analyzer. Electrospray ionization (ESI) mass spectra were recorded on a JEOL JMS-T100CS. Optical rotations were determined using a JAS-CO P-1030 digital polarimeter in 50 mm cells using the D line of sodium (589 nm). Thin-layer (TLC) and silica gel column chromatographies were performed using a Merck 5554 (silica gel) TLC plate and Fuji Silysia Chemical FL-100D, respectively. (R,R)-15²⁶ and (S,S)-15²⁷ were prepared from L-tartaric acid and D-mannitol according to literature procedures.

(S.S)-17. A mixture of 3Boc-cyclen 16 (960 mg, 2.03 mmol), diiodide $((R,R)-15)^{26}$ (358 mg, 0.94 mmol), and Na₂CO₃ (591 mg, 5.8 mmol) in CH₃CN (0.5 mL) was refluxed for 8 days. The mixture was filtered through a Celite pad, passed through a short silica gel column using ethyl acetate as the eluant, and evaporated. To a CHCl₃ solution (6 mL) of the resulting residue and benzyl chloroformate (0.30 mL, 2.1 mmol) was added *i*Pr₂NEt (0.39 mL, 2.2 mmol) at 0 °C. The mixture was stirred for 30 min at rt and evaporated to dryness. The resulting residue was purified by silica gel column chromatography (hexane/AcOEt = 3:1) to afford (S,S)-17 as a colorless solid (533 mg, 53% yield). Mp 96–98 °C. $[\alpha]_D^{24} = -75.8$ (c = 1.00 in CHCl₃). Anal. Calcd (%) for C₅₅H₁₀₄N₈O₁₅: C, 58.18; H, 9.41; N, 9.87. Found: C, 57.73; H, 9.28; N, 9.78. IR (KBr): v = 2976, 2931, 2872, 1686, 1458, 1415, 1365, 1316, 1249, 1158, 1105, 977, 859, 771, 754 cm⁻¹. ¹H NMR (300 MHz, CDCl₃/TMS): $\delta = 1.33$ (6H, s), 1.44 (36H, s), 1.47 (18H, s), 2.63–3.72 ppm (38H, br). ¹³C NMR (100 MHz, CDCl₃/TMS): δ=27.09, 28.34, 28.56, 47.12, 47.55, 48.13, 48.39, 49.39, 49.84, 55.47, 55.94, 56.32, 76.80, 78.96, 79.13, 79.25, 109.18, 155.25, 155.57, 156.04 ppm.

(S,S)-18·4.5TFA. To a CH₂Cl₂ solution (16 mL) of (S,S)-17 (201 mg, 0.19 mmol) was added trifluoroacetic acid (8 mL) at

0 °C. The mixture was stirred for 2.5 h at rt, filtered, and the filtrate was concentrated under reduced pressure. Reprecipitation from EtOH/Et₂O gave (*S*,*S*)-**18** · 4.5TFA as a colorless powder (158 mg, 73% yield). Mp 199–200 °C (dec.). $[α]_{D}^{25} = -74.9 (c=1.00 \text{ in } H_2\text{O})$. Anal. Calcd (%) for C₃₂H_{54.5}F_{13.5}N₈O₁₁: C, 39.07; H, 5.58; N, 11.39. Found: C, 38.99; H, 5.48; N, 11.50. IR (KBr): ν = 3435, 3293, 3103, 2984, 2856, 1681, 1459, 1418, 1203, 1128, 1088, 918, 833, 799, 776, 721 cm⁻¹. ¹H NMR (300 MHz, D₂O/TSP): δ = 1.48 (6H, s), 2.76–3.18 (36H, m), 3.98 ppm (2H, d, *J*=7.3 Hz). ¹³C NMR (100 MHz, D₂O/dioxane): δ = 26.64, 41.10 (br), 42.82 (br), 44.85 (br), 47.49 (br), 49.51 (br), 53.47, 76.63, 110.52, 116.80 (q, *J*_{C-F} = 292 Hz), 163.33 ppm (q, *J*_{C-F} = 35 Hz).

 $(S,S)-11 \cdot (NO_3)_4 \cdot 0.5H_2O ((S,S)-Zn_2L^6 \cdot (NO_3)_4 \cdot 0.5H_2O).$ A H_2O solution of (S,S)-18·4.5TFA (150 mg, 0.13 mmol) was passed through a column of ion-exchange resin (IRA-400J, HO⁻ form) to afford the acid-free ligand (S,S)-18 as a pale yellow oil. To a solution of the free ligand (S,S)-18 in EtOH (4 mL) was added $Zn(NO_3)_2 \cdot 6H_2O$ (124 mg, 0.42 mmol) in EtOH (4 mL), and the resulting mixture was stirred overnight. The precipitate that formed during the reaction was isolated on a filter, and then recrystallized from EtOH/H2O, afforded colorless crystals (110 mg, quant) which were suitable for X-ray crystal structure analysis. Mp 295–300 °C (dec.). $[\alpha]_{D}^{20} = -5.0$ (c = 0.5 in H₂O). Anal. Calcd (%) for C₂₃H₅₁N₁₂O_{14.5}Zn₂: C, 32.18; H, 5.99; N, 19.58. Found: C, 32.45; H, 6.18; N, 19.61. IR (KBr): v = 3434, 3240, 2932, 2882, 1627, 1480, 1459, 1379, 1305, 1256, 1240, 1224, 1134, 1090, 1050, 992, 904, 858, 834, 812, 794, 748 cm $^{-1}$ $^1\mathrm{H}$ NMR (300 MHz, $D_2\mathrm{O}/$ TSP): $\delta = 1.47 (6H, s), 2.75 - 3.25 (36H, m), 3.77 (2H, br), 4.02 (4H, s))$ br), 4.21 ppm (2H, d, J = 7.1 Hz). ¹³C NMR (100 MHz, D₂O/ dioxane): $\delta = 25.74, 41.94, 41.99, 42.06, 43.04, 43.47, 44.15, 44.27,$ 44.40, 50.29, 50.59, 54.92, 74.50, 111.65 ppm. HRMS (ESI⁺): calcd for [M–NO₃[–]]⁺, 784.2274; found, 784.2274.

(R,R)-11·(NO₃)₄·H₂O ((R,R)-Zn₂L⁶·(NO₃)₄·H₂O). The (R,R)-11 was synthesized from (S,S)-15²⁷ in a similar manner as for (S,S)-11. Mp 295–300 °C (dec.). $[\alpha]_D^{19} = +4.3$ (c = 0.5 in H₂O). Anal. Calcd (%) for C₂₃H₅₂N₁₂O₁₅Zn₂: C, 31.84; H, 6.04; N, 19.38. Found: C, 31.99; H, 5.83; N, 19.33.

Crystallographic Study of (*S*,*S*)-11·(NO₃)₄ ((*S*,*S*)-Zn₂L⁶·(NO₃)₄). (*S*,*S*)-11·(NO₃)₄ was recrystallized from EtOH/H₂O at rt. All measurements were made on a Rigaku Saturn CCD area detector with graphite monochromated Mo–Kα radiation at 123 K. The structure was solved by direct methods²⁸ and refined by full-matrix least-squares techniques. All calculations were performed using the CrystalStructure crystallographic software package except for refinements, which were performed with SHELXL-97.²⁹ C₂₃H₅₀N₁₂O₁₅Zn₂, M_r =865.53, a colorless block crystal, crystal size 0.20 × 0.15 × 0.10 mm, orthorhombic, space group *P*2₁2₁2₁ (#19), *a* = 8.8633(18), *b* = 12.378(3), *c* = 31.719(6) Å, *V*=3480.0(12) Å³, *Z*=4, D_{calc} =1.652 g·cm⁻³, 28446 measured reflections, 7970 unique reflections, 2 $θ_{max}$ = 57.4°, *R*1 (w*R*2) = 0.0854 (0.2036), GOF = 1.153.

Potentiometric pH Titrations. The preparation of the test solutions and the method used for calibration of the electrode system (Potentiometric Automatic Titrator AT-400 and Auto Piston Buret APB-410, Kyoto Electronics Manufacturing, Co. Ltd.) with a Kyoto Electronics Manufacturing Co. Combination pH Electrode 98100C171 have been described previously.¹⁸ All of the test solutions (50 mL) were maintained under an argon (> 99.999% purity) atmosphere. The potentiometric pH titrations were performed with I = 0.1 (NaNO₃) at 25.0 ± 0.1 °C (0.1 M aqueous NaOH was used as the base). The deprotonation constants were determined using the "BEST" software program.³⁰ The K_W

⁽²⁶⁾ Mori, K.; Tamada, S. Tetrahedron 1979, 35, 1279-1284.

⁽²⁷⁾ Rubin, L. J.; Lardy, H. A.; Fischer, H. O. L. J. Am. Chem. Soc. 1952, 74, 425–428.

⁽²⁸⁾ Burla, M. C.; Caliandro, R.; Camalli, M.; Carrozzini, B.; Cascarano, G. L.; De Caro, L.; Giacovazzo, C.; Polidori, G.; Spagna, R. J. Appl. Crystallogr. 2005, 38, 381–388.

⁽²⁹⁾ Sheldrick, G. M. SHELX-97, Program for the Refinement of Crystal Structures; University of Göttingen: Göttingen, Germany, 1997.
(30) Martell, A. E.; Motekaitis, R. J. Determination and Use of Stability

⁽³⁰⁾ Martell, A. E.; Motekaitis, R. J. *Determination and Use of Stability Constants*, 2nd ed.; VCH: New York, 1992.

Scheme 4

 $\begin{array}{c|c} CH_2Cl_2\\ \hline 68\% \end{array} R = H \quad : (R,R) \textbf{-18} \textbf{\cdot} \textbf{4TFA salt} \\ ((R,R) \textbf{-1.}^{6} \textbf{\cdot} \textbf{4TFA salt}) \end{array}$

(equivalent to $a_{H+}a_{OH-}$), K_W' (equivalent to $[H^+][HO^-]$), and f_{H+} values used at 25 °C were $10^{-14.00}$, $10^{-13.79}$, and 0.825, respectively. The corresponding mixed constants K_2 (= $[HO^-$ -bound species] $a_{H+}/$ [H₂O-bound species]), were derived using $[H^+] = a_{H+}/f_{H+}$. The percentage species distribution values against pH (= $-\log[H^+] + 0.084$) were obtained using the "SPE" software program.³⁰

ITC.³¹ The heat of complexation were recorded on a MicroCal VP-ITC at 25.0 °C and pH 7.4 (50 mM HEPES buffer with I = 0.10 (NaNO₃)). In a typical experiment, the solution (1.4 mL) of 0.1 mM (*S*,*S*)-1,2-CDP₂ in 50 mM HEPES buffer with I=0.10 (NaNO₃) was placed in a calorimeter cell, to which a solution of 1 mM (*S*,*S*)-11 in 50 mM HEPES was loaded. The obtained calorimetric data were used to determine the ΔH value and apparent complexation constants, K_{app} , using the "Origin 7" software program provided by OriginLab Corporation.

Results and Discussion

Complexation of 3 (Zn_3L^2) with Ins(1,4,5)P₃, as Examined by ITC. We first performed ITC experiments to examine the complexation of 3 (Zn_3L^2) with Ins(1,4,5)P₃. A solution of 3 (1 mM) was titrated into Ins(1,4,5)P₃ (50 μ M) at 25 °C and pH 7.4 (50 mM HEPES with I = 0.1

Figure 1. ORTEP drawing of (S,S)-11·(NO₃)₄ ((S,S)-Zn₂L⁶·(NO₃)₄) (50% ellipsoids). (a) Top view and (b) side view. Selected bond lengths [Å]: Zn(1)-O(3) 1.991(5), Zn(1)-N(1) 2.210(6), Zn(1)-N(2) 2.098(6), Zn(1)-N(3) 2.163(6), Zn(1)-N(4) 2.093(6), Zn(2)-O(6) 1.989(5), Zn(2)-N(5) 2.201(6), Zn(2)-N(6) 2.100(7), Zn(2)-N(7) 2.152(6), Zn(2)-N(8) 2.132(6). Two external nitrate anions (not Zn²⁺-bound nitrates), hydrogen atoms, and water have been omitted for clarity.

(NaNO₃)). A typical titration curve is shown in the Supporting Information (Figure S1) indicates that the complexation of these two molecules was exothermic and that it continued over the addition of one equivalent of Zn_3L^2 . Unfortunately, an analysis of a typical titration curve (Supporting Information, Figure S1) based on the assumption that Zn_3L^2 binds to $Ins(1,4,5)P_3$ in a 1:1 ratio was not successful.

Synthesis of (S,S)- and (R,R)-11·(NO₃)₄ ((S,S)- and (R,R)-Zn₂L⁶·(NO₃)₄). We next synthesized chiral ditopic Zn²⁺ complexes (S,S)- and (R,R)-11·(NO₃)₄ ((S,S)- and (R,R)-Zn₂L⁶·(NO₃)₄), which can be readily prepared from L-tartaric acid or D-mannitol (Scheme 3 and 4). For the synthesis of (S,S)-11 ((S,S)-Zn₂L⁶), (R,R)-15 was prepared from L-tartaric acid²⁶ and reacted with

^{(31) (}a) Freire, E.; Mayorga, O. L.; Straume, M. Anal. Chem. 1990, 62, 950a. (b) Wadsö, I. Chem. Soc. Rev. 1997, 79–86.

Article

3Boc-cyclen 16^{18} to give (S,S)-17 (Scheme 3). The six Boc groups of (S,S)-17 were selectively deprotected by treatment with trifluoroacetic acid (TFA) in CH₂Cl₂ to give (S,S)-18 ((S,S)-L⁶) as the TFA salt. Acid-free (S,S)-18 was obtained by treatment of (S,S)-18·4.5TFA with IRA-400 (HO⁻ form) and reacted with Zn(NO₃)₂·6H₂O to afford (S,S)-11. To prepare enantiomeric (R,R)-11, D-mannitol was converted to (S,S)-15 according to a literature procedure²⁷ and was then reacted with 3Boccyclen 16 to obtain (R,R)-17 (Scheme 4). The (R,R)-17 was converted into (R,R)-11·(NO₃)₄ in a manner similar to that for (S,S)-11.

Crystal Structure Analysis of (S,S)-11·(NO₃)₄ ((S,S)-Zn₂L⁶·(NO₃)₄). Figure 1 shows the crystal structure of (S,S)-11·(NO₃)₄ ((S,S)-Zn₂L⁶·(NO₃)₄).³² Representative crystallographic parameters are listed in the Supporting Information, Table S1. The distance between the two Zn²⁺ ions (Zn(1)-Zn(2) in Figure 1) was determined to be 6.8 Å and the two nitrates coordinated to Zn²⁺ ions. The crystal structures of Ins(1,4,5)P₃ complexed with the InsP₃R binding core²⁰ and the binding site of the Ins(1,4,5)P₃ 3 kinase (IPK)²¹ complex disclosed that the cyclohexane ring of Ins(1,4,5)P₃ has a chair conformation with three phosphate groups in equatorial positions. In addition, the distances of three sets of two phosphorus atoms in Ins(1,4,5)P₃ are 5.0 Å for P4-P5, 7.2 Å for P1-P5, and 8.4 Å for P1-P4, as shown in Chart 4.

In an earlier study, Hiskey's group calculated the distances between two phosphorus atoms of *trans*-1,2-CDP₂ and *cis*-1,3-CDP₂ to be 6.01 and 7.82 Å (for diequatrial forms).^{25b} For a more accurate calculation, we used density functional theory at the MPW1PW91/6-31++G level,³³ which gave the distances between two phosphorus atoms in *trans*-1,2-CDP₂, *cis*-1,3-CDP₂, and *trans*-1,4-CDP₂ of 6.7, 8.4, and 8.9 Å, respectively, as indicated in Chart 4 (a semiempirical PM3 calculation method³³ also afforded similar results). Thus, it was expected that the distance between two Zn²⁺ ions in (*S*, *S*)-11 could accommodate the two phosphate groups at P4 and P5 of Ins(1,4,5)P₃ as well as the two phosphate groups of *trans*-1,2-CDP₂.

Deprotonation Constants for Zn^{2+} -Bound Water Molecules of (S,S)-11 ((S,S)-Zn₂L⁶). The plain curve (a) in Figure 2 shows a typical potentiometric pH titration

Figure 2. Typical potentiometric pH titration curves for 0.5 mM (*S*,*S*)-11 ((*S*,*S*)-Zn₂L⁶) (a plain curve (a)) and a mixture of 0.5 mM (*S*,*S*)-11 + 0.5 mM Na₄·(*S*,*S*)-1,2-CDP₂ (a bold curve (b)) in aqueous solution with I = 0.1 (NaNO₃) at 25 °C. *Eq* (HO⁻) is the number of equivalents of base (NaOH) added.

Chart 4. Phosphorus–Phosphorus Distances of $Ins(1,4,5)P_3$ in the Crystal Structure of $Ins(1,4,5)P_3$ – $InsP_3R^{20}$ and Phosphorus–Phosphorus Distances of **12** (*trans*-1,2-CDP₂), **13** (*cis*-1,3-CDP₂), and **14** (*trans*-1,4-CDP₂) Calculated by the DFT Method in This Study

curve for 0.5 mM (*S*,*S*)-11 ((*S*,*S*)-Zn₂L⁶) in aqueous solution with I = 0.1 (NaNO₃) at 25 °C, from which the deprotonation constants (p*K*_a) for two Zn²⁺-bound water molecules of (*S*,*S*)-11 defined by eqs 1–2 were determined to be 7.1 ± 0.1 and 7.8 ± 0.1 using the "BEST" software program.³⁰ Previously, two p*K*_a values for Zn²⁺-bound waters of 7 (Zn₂L⁴) were reported to be 6.7 and 8.5 in aqueous solution with I = 0.1(NaNO₃) at 25 °C,^{18,34} in which the separate p*K*_a values was explained by strong intramolecular hydrogen bonding between the Zn²⁺–(HO⁻) and Zn²⁺–OH₂. In contrast, the p*K*_a values for the two Zn²⁺-bound waters in 9 (Zn₂L⁵) were 7.2 and 7.9,^{18,35} suggesting that they are involved in less interactions compared to those in 7. Considering these collective facts, the two close p*K*_a values of (*S*,*S*)-11 suggest weak interactions between the two Zn²⁺–bound waters. Similarly, the p*K*_a values

⁽³²⁾ CCDC 767554 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

⁽³³⁾ Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, Jr., J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 03, Revision D.02; Gaussian, Inc.: Wallingford, CT, 2004.

⁽³⁴⁾ Fujioka, H.; Koike, T.; Yamada, N.; Kimura, E. *Heterocycles* **1996**, *42*, 775–787.

⁽³⁵⁾ Koike, T.; Takashige, M.; Kimura, E.; Fujioka, H.; Shiro, M. *Chem.*—*Eur. J.* **1996**, *2*, 617–623.

Table 1. pK_a Values for CDP₂ and Relevant Phosphate Compounds

	pK _{a1}	pK _{a2}	pK _{a3}	pK _{a4}
trans-1,2-CDP ₂	< 3	< 3	$6.4(6.42)^a$	$8.4(8.32)^{a}$
cis-1,3-CDP ₂	< 3	< 3	$6.6(6.80)^a$	$7.5(7.86)^a$
trans-1,4-CDP ₂	< 3	< 3	$6.6(7.10)^{b}$	$7.3(7.10)^{b}$
Glu-1-P ^{c,d}	1.10	6.13	× /	× /
\mathbf{PP}^d	< 3	5.8		
4-NPP ^d	< 3	5.2		

^{*a*} From ref 25b. ^{*b*} pK_a values for a mixture of *cis*- and *trans*-1,4-CDP₂ reported in ref 25b. ^{*c*} From ref 36. ^{*d*} From ref 18.

for the enantiomer (R,R)-11 were determined to be 7.1 \pm 0.1 and 7.9 \pm 0.1, which are identical to those for (S,S)-11 under the same conditions.

$$Zn_{2}L^{6}(H_{2}O)_{2} \rightleftharpoons Zn_{2}L^{6}(H_{2}O)(HO^{-})$$

+ H⁺ : K_{a1}(Zn₂L⁶) = [Zn_{2}L^{6}(H_{2}O)(HO^{-})] \cdot a_{H+} / [Zn_{2}L^{6}(H_{2}O)_{2}] (1)

$$Zn_{2}L^{6}(H_{2}O)(HO^{-}) \rightleftharpoons Zn_{2}L^{6}(HO^{-})_{2}$$

+ H⁺: $K_{a2}(Zn_{2}L^{6}) = [Zn_{2}L^{6}(HO^{-})_{2}] \cdot a_{H+} / [Zn_{2}L^{6}(H_{2}O)(HO^{-})]$ (2)

pK_a Values Determined by Potentiometric pH Titration for 12 (*trans*-1,2-CDP₂) and Its Conformation in Aqueous Solution. The synthesis of (*S*,*S*)- and (*R*,*R*)-12 ((*S*,*S*)- and (*R*,*R*)-1,2-CDP₂), 13 (*cis*-1,3-CDP₂), and 14 (*trans*-1,4-CDP₂) was carried out as described in the Supporting Information. The plain curve (a) in Supporting Information, Figure S2 shows a typical potentiometric pH titration for (*S*,*S*)-1,2-CDP₂. An analysis of this curve gave four pK_{ai} values (*i* = 1-4) defined by eq 3 as < 3 (pK_{a1}), < 3 (pK_{a2}), 6.4 ± 0.1 (pK_{a3}), and 8.4 ± 0.1 (pK_{a4}), which are summarized in Scheme 5 and Table 1.

For comparison, the pK_{ai} values (i = 1-2) for Dglucose- α -1-phosphate (Glu-1-P) are 1.10 and 6.13 as shown in Scheme 6, ^{18,36} and the pK_{a2} values for phenyl phosphate (PP) and 4-nitrophenyl phosphate (4-NPP) are 5.8 ± 0.1 and 5.2 ± 0.1 , respectively (Table 1).¹⁸ Similarly, the four pK_{ai} values (i = 1-4) for *cis*-1,3-CDP₂ were determined to be < 3 (pK_{a1}), < 3 (pK_{a2}), 6.6 \pm 0.1 (pK_{a3}), Scheme 6

7.5 \pm 0.1 (p K_{a4}) by potentiometric pH titration (bold curve (b) in Supporting Information, Figure S2) and the p K_a values for *trans*-1,4-CDP₂ were determined to be <3 (p K_{a1}), <3 (p K_{a2}), 6.6 \pm 0.1 (p K_{a3}), 7.3 \pm 0.1 (p K_{a4}) (dashed curve (c) in Supporting Information, Figure S2). These p K_a values are nearly identical to those reported by Hiskey and co-workers (Table 1). The p K_{a4} value for *trans*-1,2-CDP₂ of 8.4 is higher than typical p K_{a2} values for phosphates, an observation that suggests that the diequatorial conformation is preferred over the diaxial conformation at neutral pH, which leads to the conclusion that *trans*-1,2-CDP₂ has the potential for serving a good model for Ins(1,4,5)P₃, as previously described by Hiskey and co-workers.^{25b}

$$(\mathbf{H}_{(5-i)}\mathbf{CDP}_{2})^{(i-1)^{-}} \rightleftharpoons (\mathbf{H}_{(4-i)}\mathbf{CDP}_{2})^{i^{-}} + \mathbf{H}^{+}: \quad K_{ai}(\mathbf{CDP}_{2}) = [(\mathbf{H}_{(4-i)}\mathbf{CDP}_{2})^{i^{-}}] \cdot a_{\mathbf{H}^{+}} / [(\mathbf{H}_{(5-i)}\mathbf{CDP}_{2})^{(i-1)^{-}}] \quad (i = 1 - 4)$$
(3)

Recognition of 12 (trans-1,2-CDP₂) by (S,S)-11 ((S,S)- Zn_2L^6), as Evidenced by ¹H NMR and ³¹P NMR. A ¹H NMR titration of (S, \tilde{S}) -11 ((S, S)-Zn₂L⁶) (1 mM) was performed with increasing concentrations of optically pure 12 (trans-1,2-CDP₂) in D_2O at pD 7.4 and 25 °C. The methyl signal of (S,S)-11 was shifted from 1.469 ppm to 1.490 ppm upon the addition of (S,S)-1,2-CDP₂, reaching a plateau at $[(S,S)-1,2-CDP_2]/[(S,S)-11] > 1.0$ (closed circles in Figure 3a and in the Supporting Information, Figure S3). A Job's plot for (S,S)-11 and (S,S)-1,2-CDP₂ shows a 1:1 stoichiometry for the complexation (closed circles in Figure 3b), and the log K_{app} for (S,S)-11 and (S,S)-1,2-CDP₂ was estimated to be >6 at pD 7.4 and 25 °C by nonlinear least-squares curve fitting of the titration data in Figure 3a. A shift in the ³¹P NMR signal (peak) ($\Delta\delta$) for (S,S)-1,2-CDP₂ (5 mM) upon the

^{(36) (}a) Cori, C. F.; Colowick, S. P.; Cori, G. T. J. Biol. Chem. 1937, 121, 465–477. (b) Kumler, W. D.; Eiler, J. J. J. Am. Chem. Soc. 1943, 65, 2355–2361.

Figure 3. (a) Results of ¹H NMR titrations for (S,S)-11 ((S,S)-Zn₂L⁶) (1 mM) with increasing concentration of (S,S)-12 ((S,S)-1,2-CDP₂) (closed circles) and (R,R)-12 ((R,R)-1,2-CDP₂) (open circles) in D₂O at pD 7.4 and 25 °C. (b) Job plots of (S,S)-11 with (S,S)-1,2-CDP₂ (closed circles) and (R,R)-1,2-CDP₂ (open circles) in D₂O at pD 7.4 and 25 °C. [(S,S)-11 + *trans*-1,2-CDP₂] = 2 mM ([complex] = [[(S,S)-11]_{total} × ($\Delta\delta/\Delta \Delta_{max}$)]. The methyl signal of (S,S)-11 was used in these NMR titration experiments.

addition of (*S*,*S*)-11 also indicated strong 1:1 complexation between (*S*,*S*)-11 and (*S*,*S*)-1,2-CDP₂ at pD 7.4 (1 M HEPES buffer) and 25 °C (Figure 4) (The phosphorus signal of (*S*,*S*)-1,2-CDP₂ was shifted from 1.810 ppm to 3.334 ppm upon the addition of (*S*,*S*)-11). Similar ¹H NMR and ³¹P NMR titration results were obtained for (*S*,*S*)-11–(*R*,*R*)-1,2-CDP₂ (log K_{app} value > 6 for 1:1 complexation; open circles in Figure 3 and 4), (*R*,*R*)-11–(*S*,*S*)-1,2-CDP₂, and (*R*,*R*)-11–(*R*,*R*)-1,2-CDP₂ (log K_{app} value > 6 for 1:1 complexation, see Table 2).

It should be mentioned that ¹H NMR and ³¹P NMR spectra of a mixture of **11** and 1,2-CDP₂ in D₂O under these conditions exhibited averaged signals of uncomplexed and complexed species of **11**, meaning that complexes of **11** with 1,2-CDP₂ are thermodynamically stable but kinetically labile on the NMR time scale.^{11,18}

¹H NMR titrations of (*S*,*S*)-11 with *trans*-1,4-CDP₂ showed inconsistent changes in the chemical shifts (data not shown). An irregular change in chemical shifts for the 7-(S,S)-1,2-CDP₂ complex was also observed in a ¹H NMR titration experiment (data not shown). These results indicate that these host–guest complexations

Figure 4. ³¹P NMR titration curves for (S,S)-12 ((S,S)-1,2-CDP₂) (closed circles) and (R,R)-12 ((R,R)-1,2-CDP₂) (open circles) with (S,S)-11 ((S,S)-Zn₂L⁶) at pD 7.4 (1 M HEPES). [(S,S)-1,2-CDP₂] = [(R,R)-1,2-CDP₂] = 5 mM.

occur not only in a 1:1 ratio but that several other ratios are also involved, as supported by the electrospray ionization-mass spectrometry (ESI-MS), as described below. The results of a ¹H NMR titration of 7 (Zn_2L^4) with (*S*,*S*)-1,2-CDP₂ and other CDP₂ suggest that several complexes are formed.

ESI-MS Study of Complexes of (S,S)-11 ((S,S)-Zn₂L°) and 7 (Zn_2L^4) with CDP₂. Figure 5 shows ESI (positive) mass spectra for mixtures of $(S,S)-11 \cdot (NO_3)_4$ with (a) $Na_4 \cdot (S,S) - 1,2 - CDP_2$, (b) $Na_4 \cdot cis - 1,3 - CDP_2$, and (c) Na₄·trans-1,4-CDP₂ in H₂O at pH 7.4 ([(S,S)-11· $(NO_3)_4$ = $[Na_4 \cdot CDP_2] = 0.2 \text{ mM}$ (See the Supporting) Information, Figures S4–S6 for assignments of the ESI mass spectra). Various ESI-MS conditions (ion source temperature: rt or 250 °C, orifice voltage: 40, 80, or 120 V) gave similar results. Signals at m/z = 447-453 (peak i), 458-464 (peak ii), 871-883 (peak iii), and 893-905 (peak iv) in Figure 5a were assigned as $[((S,S)-11)^{4+} + (Na \cdot H \cdot I)^{4+}]$ (*S*,*S*)-1,2-CDP₂)²⁻]²⁺, [((*S*,*S*)-11)⁴⁺ + (Na₂·(*S*,*S*)-1,2-CDP₂)²⁻]²⁺, [((*S*,*S*)-11)⁴⁺ + (H·(*S*,*S*)-1,2-CDP₂)³⁻]⁺, and [((*S*,*S*)-11)⁴⁺ + (Na·(*S*,*S*)-1,2-CDP₂)³⁻]⁺, respectively, which fit to the theoretical mass distribution spectra for a 1:1 (S,S)-11-(S,S)-1,2-CDP₂ complex (For a representative example, see the Supporting Information, Figure S7). In the case of *cis*-1,3-CDP₂ and *trans*-1,4-CDP₂ (Figure 5b and 5c), peak v was observed at m/z =796-804, which indicates the presence of 2:1 (S,S)-11- CDP_2 complexes $([2((S,S)-11)^{4+} + (CDP_2)^{4-} \cdot 2(NO_3^{-})]^{2+}).$ These results imply that (S,S)-11 forms a 1:1 complex with (S,S)-1,2-CDP₂, while mixtures of (S,S)-11 with cis-1,3-CDP₂ and *trans*-1,4-CDP₂ afford several complexes including 1:1, 2:1 and other complexes.

For comparison, we also performed ESI-MS experiments (positive) for mixtures of $7 \cdot (NO_3)_4$ with (a) $Na_4 \cdot (S,S)$ -1,2-CDP₂, (b) $Na_4 \cdot cis$ -1,3-CDP₂, and (c) $Na_4 \cdot trans$ -1,4-CDP₂ in H₂O at pH 7.4 ([$7 \cdot (NO_3)_4$] = [$Na_4 \cdot CDP_2$] = 0.2 mM) (Supporting Information, Figures S8–S10), indicates the formation of 1:1, 2:1 and other complexes for mixtures of 7-*cis*-1,3-CDP₂ and 7-*trans*-1,4-CDP₂.

Complexation Properties of (S,S)-11 ((S,S)-Zn₂L⁶) with *trans*-1,2-CDP₂, as Examined by Potentiometric pH Titrations. An analysis of a potentiometric pH titration curve for a mixture of 0.5 mM (S,S)-11 ((S,S)-Zn₂L⁶) and

Table 2. Complexation Constants (log K_{app}) for Ditopic Zinc(II)-cyclen Complexes with CDP₂ at pH 7.4 and 25 °C Determined by Potentiometric pH Titration, ITC, ¹H NMR Titration, and ³¹P NMR Titration

	titration methods	(S,S)-11 $((S,S)$ -Zn ₂ L ⁶)	(R,R)-11 $((R,R)$ -Zn ₂ L ⁶)	7 (Zn_2L^4)
(S,S)-12 ((S,S)-1,2-CDP ₂)	potentiometric pH	$7.6^{a} (9.3^{b})$	$7.6^{a} (9.4^{b})$	
	ÎTC	6.9^{a}	7.1 ^a	complicated complexation
	¹ H NMR	$> 6^a$	$> 6^a$	complicated complexation
	³¹ P NMR	$> 6^a$		* *
(<i>R</i> , <i>R</i>)- 12 ((<i>R</i> , <i>R</i>)-1,2-CDP ₂)	potentiometric pH	$7.3^{a} (9.2^{b})$	$7.5^{a} (9.2^{b})$	
	ÎTC	7.0^{a}	6.7 ^{<i>a</i>}	
	¹ H NMR	$> 6^a$	$> 6^a$	
	³¹ P NMR	$>6^a$		
13 (<i>cis</i> -1,3-CDP ₂)	ITC	6.3^{a}		
14 (<i>trans</i> -1,4-CDP ₂)	ITC	complicated complexation		

^{*a*} The log K_{app} value determined by eqs 5–7 in the text. ^{*b*} The log K_s value defined by eq 4 in the text.

0.5 mM (S,S)-12 ((S,S)-1,2-CDP₂) (curve b in Figure 2) using the "BEST" program software³⁰ gave a value for the intrinsic complexation constant, $\log K_s$ defined by eq 4, of 9.3 at 25 °C with I = 0.1 (NaNO₃). From this value, an apparent complex formation constant at pH 7.4 defined by eqs 5-7, log K_{app} , was calculated to be 7.6 (Table 2). The pH-dependent speciation diagram (Figure 6) for a mixture of (S,S)-11 (0.5 mM) and (S,S)-1,2-CDP₂ (0.5 mM), obtained using the "SPE" program software,³⁰ indicates that the complexation was quantitative at physiological pH 6.2–8.6. Similar results were observed for mixtures of (S,S)-11-(R,R)-1,2-CDP₂, (R,R)-11-(S,S)-1,2-CDP₂, and (*R*,*R*)-11–(*R*,*R*)-1,2-CDP₂ (Table 2). On the basis of the above finding, it can be concluded that the affinities of (S,S)- and (R,R)-11 for both enantiomers of trans-1,2-CDP₂ (four combinations in total) are almost identical.

$$Zn_{2}L^{6}(H_{2}O)_{2}+\left(CDP_{2}\right)^{4-}\rightleftarrows Zn_{2}L^{6}-\left(CDP_{2}\right)^{4-}\ complex:$$

$$K_{s} = [Zn_{2}L^{6} - (CDP_{2})^{4-}] / [Zn_{2}L^{6}(H_{2}O)_{2}] \cdot [(CDP_{2})^{4-}]$$
(M⁻¹) (4)

$$K_{app} = [Zn_2L^6 - (CDP_2)^{4-}] / [Zn_2L^6]_{free} \cdot [(CDP_2]_{free}$$
(at designated pH) (M⁻¹) (5)

$$\begin{split} \left[Zn_2L^6 \right]_{free} \, &= \left[Zn_2L^6(H_2O)_2 \right] + \left[Zn_2L^6(H_2O)(HO^-) \right] \\ &+ \left[Zn_2L^6(HO^-)_2 \right] \end{split} \tag{6}$$

$$[CDP_{2}]_{free} = [(CDP_{2})] + [(CDP_{2})^{1-}] + [(CDP_{2})^{2-}] + [(CDP_{2})^{3-}] + [(CDP_{2})^{4-}]$$
(7)

ITC for the Complexation of (S,S)-11 ((S,S)-Zn₂L⁶) with CDP₂. We studied the complexation of the ditopic Zn²⁺ receptor (S,S)-11 ((S,S)-Zn₂L⁶) with (S,S)-12 ((S,S)-1,2-CDP₂), (R,R)-12 ((R,R)-1,2-CDP₂), 13 (*cis*-1,3-CDP₂), and 14 (*trans*-1,4-CDP₂) by ITC at pH 7.4 (50 mM HEPES with I=0.1 (NaNO₃)) and 25 °C (Figure 7 and in the Supporting Information, Figures S11–S12). In typical experiments, aqueous solutions of (S,S)-11, in a syringe, were titrated into a cell containing aqueous solutions of CDP₂. A typical curve for the titration of (S,S)-1,2-CDP₂ (0.1 mM) with (S,S)-11 (1 mM), shown in Figure 7 (the reaction was exothermic), was analyzed by means of nonlinear curve fitting. The log K_{app} values defined by eq 5 (6.9 ± 0.1 for a 1:1 complex of (S,S)-11–(S,S)-1,2-CDP₂ and 7.0 \pm 0.1 for (S,S)-11–(R,R)-1,2-CDP₂) were in reasonably good agreement with the corresponding log K_{app} values obtained by potentiometric pH titration (Table 2), indicating negligible chiral discrimination of (S,S)- and (R,R)-1,2-CDP₂ by (S,S)-11. Though a small amount of 2:1 (S,S)-11–cis-1,3-CDP₂ was observed in ESI-MS (peak (v) in Figure 5b), a nonlinear curve fitting analysis of an ITC curve for (S,S)-11 with cis-1,3-CDP₂ suggested a 1:1 complexation with a log K_{app} value of 6.3 (Supporting Information, Figure S11 and Table 2), which is smaller than that for *trans*-1,2-CDP₂. The titration curve for (S,S)-11 and *trans*-1,4-CDP₂ (14) was complicated (Supporting Information, Figure S12).

Complexation of (S,S)- and (R,R)-11 ((S,S)- and (R,R)- Zn_2L°) with $Ins(1,4,5)P_3$, as Studied by ESI-MS and ITC. Finally, the complexation of (S,S)- and (R,R)-11 with $Ins(1,4,5)P_3$ was examined. In ESI-MS, several peaks corresponding to a 2:1 complex of 11 and $Ins(1,4,5)P_3$ were observed (Supporting Information, Figure S13). ITC experiments for $Ins(1,4,5)P_3$ with (S,S)- and (R,R)-11 at 25 °C and pH 7.4 (50 mM HEPES with I = 0.1(NaNO₃)) indicated two step complexations in both cases, while the titration curves were different (Figure 8). Thermal parameters (binding constants, enthalpy and entropy changes) for each complexations are summarized in Table 3, and the proposed binding modes are shown in Scheme 7. The log K_{app1} values for the first binding of $Ins(1,4,5)P_3$ with (S,S)-11 (8.0) and with (R,R)-11 (7.6) are somehow greater than the log K_{app} values for 11 and trans-1,2-CDP₂ (7.0-6.7) obtained by ITC (Table 3). We therefore concluded that $Ins(1,4,5)P_3$ binds to the first molecule of (S,S)-11 at the P4 and P5 to form 1:1 complex **19**, as shown in Scheme 7. The more negative ΔH value for the complexation with (S,S)-11 than that with (R,R)-11 indicates somewhat more favorable interaction with (S,S)-11, possibly because of additional interactions such as hydrogen bonding and/or hydrophobic interaction in a complex involving (S,S)-11. However, the enthalpic advantage for the complexation with (S,S)-11 ($\Delta\Delta H = -2.6$ kcal/ mol) is canceled by the less negative $-T\Delta S (\Delta (-T\Delta S) = 2.1)$ kcal/mol), which results in a similar log K_{app1} value (ΔG value) for complexation to that with (R,R)-11. These results suggest that this complexation system obeys the empirical rule of enthalpy-entropy compensation.37,38

The second log K_{app2} determined from data shown in Figure 8 were 5.9 for (*S*,*S*)-11 and 5.5 for (*R*,*R*)-11, which

Figure 5. ESI (positive) mass spectra of (S,S)-11·(NO₃)₄ with (a) Na₄·(S,S)-1,2-CDP₂, (b) Na₄·*cis*-1,3-CDP₂, and (c) Na₄·*trans*-1,4-CDP₂ in H₂O at pH 7.4 (ion source temperature: rt, orifice voltage: 80 V). [(S,S)-11·(NO₃)₄] = [CDP₂] = 0.2 mM.

are much larger than the log K_{app} value for 1:1 complexations between a monomeric Zn^{2+} -cyclen complex and

Figure 6. Distribution diagram for an aqueous solution of 0.5 mM (*S*,*S*)-11 and 0.5 mM (*S*,*S*)-1,2-CDP₂ at 25 °C with I = 0.1 (NaNO₃). Species that are present in concentrations of less than 5% are omitted for clarity.

Figure 7. Typical isothermal calorimetric titration curve of (S,S)-11 ((S,S)- $Zn_2L^6)$ with (S,S)-1,2-CDP₂ (closed square). A solution of (S,S)-11 was titrated into 1.4 mL of (S,S)-1,2-CDP₂ at 25 °C and pH 7.4 (50 mM HEPES with I = 0.1 (NaNO₃)). [(S,S)-11] = 1 mM, [(S,S)-1,2-CDP₂] = 0.1 mM. The solid line represents the best fit using a one binding site model.

Figure 8. ITC results for complex formation of $Ins(1,4,5)P_3$ with (*S*,*S*)-**11** ((*S*,*S*)-Zn₂L⁶) (closed square) and (*R*,*R*)-**11** ((*R*,*R*)-Zn₂L⁶) (open square). A solution of 1 mM **11** in 50 mM HEPES was titrated into 1.4 mL of 0.045 mM Ins(1,4,5)P₃ at 25 °C and pH 7.4 (50 mM HEPES with I = 0.1 (NaNO₃)). The solid lines represent the best fit, obtained using a two binding sites model.

^{(37) (}a) Inoue, Y.; Wada, T. Adv. Supramol. Chem. 1997, 4, 55–96.
(b) Rekharsky, M. V.; Inoue, Y. Chem. Rev. 1998, 98, 1875–1918. (c) Houk, K. N.; Leach, A. G.; Kim, S. P.; Zhang, X. Angew. Chem., Int. Ed. 2003, 42, 4872–4897.

⁽³⁸⁾ Most discussion about enthalpy–entropy compensation has been done without metal-containing hosts and/or charged guests (ref 37). As for molecular recognition by metal hosts, Mallik et al. reported the enthalpy–entropy compensation for Cu^{2+} –peptide complexes. Sun, S.; Fazal, M. A.; Roy, B. C.; Chandra, B.; Mallik, S. *Inorg. Chem.* **2002**, *41*, 1584–1590.

Table 3. Thermodynamic Parameters for (*S*,*S*)-11–Ins(1,4,5)P₃, (*R*,*R*)-11–Ins(1,4,5)P₃, (*S*,*S*)-11–(*R*,*R*)-1,2-CDP₂, (*R*,*R*)-11–(*R*,*R*)-1,2-CDP₂, and (*S*,*S*)-11–*cis*-1,3-CDP₂ Complexes at pH 7.4 and 25 °C. Determined by ITC

host-guest	host-guest $\log K_{app}$		$-T\Delta S$ (kcal/mol)
(<i>S</i> , <i>S</i>)-11–Ins(1,4,5)P ₃	8.0^a (log K_{app1})	-6.3^{a}_{b}	-4.6^{a}_{b}
	5.9° (log K_{app2})	-3.1^{o}	-4.9°
(R,R) -11-Ins $(1,4,5)P_3^a$	$7.6^{a} (\log K_{app1})$	-3.7^{a}	-6.7^{a}
	$5.5^b (\log K_{app2})$	-2.4^{b}	-5.2^{b}
$(S,S)-11-(R,R)-1,2-CDP_2$	7.0	-5.2	-4.4
$(R,R)-11-(R,R)-1,2-CDP_2$	6.7	-4.9	-4.3
(S,S)-11-cis-1,3-CDP ₂	6.3	-3.4	-5.2

^a For first complexation in Scheme 7. ^b For second complexation in Scheme 7.

Scheme 7

phosphate monoester dianions (normally, log $K_{app} = 3-4$).^{13,18} We initially hypothesized that two Zn²⁺cyclen units of 11 simultaneously bind to P1 in a sandwich manner,³⁴ as shown in 20 (Scheme 7). However, ITC curves for (S,S)-11 with monophosphates such as Glu-1-P were complicated (see Supporting Information, Figure S14). Accordingly, the second binding of $Ins(1,4,5)P_3$ with 11 was attributed to ditopic complexation at P1 and P5, as indicated by 21 in Scheme 7, because the log K_{app} value for 1:1 complexation of (S,S)-11 with cis-1,3- \hat{CDP}_2 was approximately 6 and the ΔH and $-T\Delta S$ values are almost identical in both cases. It should be noted that the first 1:1 complex of $Ins(1,4,5)P_3$ with 11 ($K_d = 10-25$ nM at pH 7.4) is 100-fold more stable than that for the second binding ($K_d = 1300-3200$ nM at pH 7.4) and is comparable to that with natural InsP₃R despite of only two-phosphate binding sites. These data could be useful for design and synthesis of the potent receptors and sensors for Ins(1,4,5)P3 and/or inhibitors of Ins-(1,4,5)P₃-related intracellular signal transduction pathways.

Moreover, it has been established that Zn^{2+} -cyclen complexes bind to dianions of phosphate monoesters, but negligibly to monoanions of phosphate diesters in aqueous solution.¹⁸ Therefore, it can be expected that chiral

bis(Zn^{2+} -cyclen) complexes such as **11** could be a potential platform for the design of receptors and sensors for phosphatidylinositol bisphosphate derivatives including phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P₂) and stereosiomers, whose P1 makes a phosphodiester moiety that connects the inositol part and the lipid (diacylglycerol) part.

Conclusion

We describe the design and synthesis of some chiral ditopic zinc complexes (S,S)- and (R,R)-11 ((S,S)- and (R,R)-Zn₂L⁶) containing chiral linkers and examined their complexation with CDP₂ derivatives, which can be assumed to be model compounds for Ins(1,4,5)P₃. The X-ray crystallographic analysis of (S,S)-11 showed that the distance between two Zn^{2+} ions in the complex is 6.8 Å, which is consistent with the P4 and P5 of Ins(1,4,5)P3 or two phosphates of trans-1,2- CDP_2 . The pK_{a4} value for trans-1,2-CDP₂ was 8.4, and greater than those of cis-1,3-CDP₂ and trans-1,4-CDP₂, suggesting the involvement of hydrogen bonding between these two adjacent phosphates, possibly fixing the molecule in a diequatorial conformation at neutral pH, as previously described by Hiskey. On the basis of ESI-MS, ITC, ¹H NMR, and ³¹P NMR titrations, both enantiomers of **11** formed 1:1 complexes with *trans*-1,2-CDP₂ (log $K_{app} = 7-8$) in aqueous

Article

solution at physiological pH, although enantioselectivity in the recognition of optically pure *trans*-1,2-CDP₂ by **11** was not so apparent. On the basis of the ITC data for $Ins(1,4,5)P_3$ with (*S*,*S*)- and (*R*,*R*)-**11**, we concluded that (*S*,*S*)- and (*R*, *R*)-**11** form 2:1 complexes with $Ins(1,4,5)P_3$ (**21** in Scheme 7), in which the first molecule of **11** cooperatively recognizes P4 and P5 of $Ins(1,4,5)P_3$ (in **19**), whose affinity ($K_d = 10-25$ nM) is comparable to that for $InsP_3R$, and the second molecule of **11** binds to P1 and P5 (**21**). Although the log K_{app} values for first complexations of $Ins(1,4,5)P_3$ with (*S*,*S*)and (*R*,*R*)-**11** were almost identical, differences in thermodynamic parameters (enthalpy and entropy changes) suggest different binding modes for the two combinations.³⁹ These results may provide important information for the design and synthesis of chemical receptors, sensors, and inhibitors for $Ins(1,4,5)P_3$ and related compounds such as $PtdIns(4,5)P_2$, and for the design of supramolecular complexes using phosphate-metal coordination bonds.

Acknowledgment. This study was supported by grantsin-aid from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan (Nos. 18390009, 19659026, and 20750081) and "Academic Frontier" project for private universities: matching fund subsidy from MEXT, 2009–2013. M.K. is also thankful for a Sasakawa Scientific Research Grant from the Japan Science Society. We thank Mr. Kiyotaka Konuma and Mr. Takanori Yajima of JEOL Japan, for the use of ESI-MS equipments (JMS-T100CS). We thank Prof. Kazunari Akiyoshi, Dr. Nobuyuki Morimoto, and Dr. Shin-ichi Sawada of Tokyo Medical & Dental University, and Mr. Yasushi Sakaguchi of DKSH Japan, for the use of ITC instruments.

Supporting Information Available: Synthesis of (*S*,*S*)- and (*R*, *R*)-1,2-CDP₂, *cis*-1,3-CDP₂, and *trans*-1,4-CDP₂. ITC data for **3** (Zn₃L²) with Ins(1,4,5)P₃, for the complexes of (*S*,*S*)-11 with *cis*-1,3-CDP₂ and *trans*-1,4-CDP₂, and (*S*,*S*)-11 with Glu-1-P. Potentiometric pH titration data for CDP₂ ((*S*,*S*)- and (*R*,*R*)-1,2-CDP₂, *cis*-1,3-CDP₂, and *trans*-1,4-CDP₂). ¹H NMR spectral changes during the titration of (*S*,*S*)-11 with (*S*,*S*)-1,2-CDP₂. Assignments of the ESI-MS for (*S*,*S*)-11 and 7 with (*S*,*S*)-1,2-CDP₂, *cis*-1,3-CDP₂, and *trans*-1,4-CDP₂. ESI-MS spectrum for the 2:1 complex of (*S*,*S*)-11 and Ins(1,4,5)P₃. Crystallographic parameters for (*S*,*S*)-11. This material is available free of charge via the Internet at http://pubs.acs.org.

⁽³⁹⁾ For references of enantioselective recognition and/or separation of chiral anions in aqueous media, see: (a) Webb, T. H.; Suh, H.; Wilcox, C. S. J. Am. Chem. Soc. 1991, 113, 8554-8555. (b) Murakami, Y.; Hayashida, O.; Nagai, Y. J. Am. Chem. Soc. 1994, 116, 2611-2612. (c) Zhang, X. X.; Bradshaw, J. S.; Izatt, R. M. Chem. Rev. 1997, 97, 3313-3361. (d) Sessler, J. L.; Andrievsky, A.; Král, V.; Lynch, V. J. Am. Chem. Soc. 1997, 119, 9385-9392. (e) Kano, K.; Kamo, H.; Negi, S.; Kitae, T.; Takaoka, R.; Yamaguchi, M.; Okubo, H.; Hirama, M. J. Chem. Soc., Perkin Trans. 2 1999, 15-21. (f) Alfonso, I.; Rebolledo, F.; Gotor, V. Chem.-Eur. J. 2000, 6, 3331-3338. (g) Alfonso, I.; Dietrich, B.; Rebolledo, F.; Gotor, V.; Lehn, J.-M. Helv. Chim. Acta 2001, 84, 280-295. (h) Tsukube, H.; Shinoda, S. Chem. Rev. 2002, 102, 2389-2403. (i) Kim, H.-J.; Asif, R.; Chung, D. S.; Hong, J.-I. Tetrahedron Lett. 2003, 44, 4335-4338. (j) Fiedler, D.; Leung, D. H.; Bergman, R. G.; Raymond, K. N. J. Am. Chem. Soc. 2004, 126, 3674-3675. (k) Lei, Z.; Anslyn, E. V. J. Am. Chem. Soc. 2004, 126, 3676-3677. (1) Heinrichs, G.; Schellenträger, M.; Kubik, S. Eur. J. Org. Chem. 2006, 4177-4186. (m) Folmer-Andersen, J. F.; Kitamura, M.; Anslyn, E. V. J. Am. Chem. Soc. 2006, 128, 5652-5653. (n) Rekharsky, M. V.; Yamamura, H.; Inoue, C.; Kawai, M.; Osaka, I.; Arakawa, R.; Shiba, K.; Sato, A.; Ko, Y. H.; Selvapalam, N.; Kim, K.; Inoue, Y. J. Am. Chem. Soc. 2006, 128, 14871-14880. (o) Ghassempour, A.; Aboul-Enein, H. Y. J. Chromatogr. A 2008, 1191, 182-187. (p) González-Álvarez, A.; Alfonso, I.; Díaz, P.; García-España, E.; Gotor-Fernández, V.; Gotor, V. J. Org. Chem. 2008, 73, 374-382.